Chapitre 4: Espaces vectoriels

La notion d'espace vectoriel généralise les propriétés de \mathbb{R}^n et de l'ensemble des matrices $M_{m\times n}(\mathbb{R})$.

Définition 33 (espace vectoriel).

On appelle espace vectoriel (réel) un ensemble non-vide V composé d'éléments sur lesquels on définit une opération d'addition et une opération de multiplication par un scalaire dans \mathbb{R}

telles que les propriétés suivantes soient satisfaites :

- 0) $u + v \in V$ et $\lambda u \in V$;
- 1) u + v = v + u pour tout $u, v \in V$;
- 2) (u + v) + w = u + (v + w) pour tout $u, v, w \in V$;
- 3) Il existe un élément de V, noté 0_V , tel que $u+0_V=u$ pour tout $u\in V$;
- 4) Pour tout $u \in V$, il existe un élément noté $-u \in V$ tel que

$$u + (-u) = 0_V;$$

- 5) $\lambda(u+v) = \lambda u + \lambda v$ pour tout $u, v \in V$ et $\lambda \in V$;
- 6) $(\lambda + \mu)u = \lambda u + \mu u$ pour tout $u \in V$ et $\lambda, \mu \in \mathbb{R}$;
- 7) $\lambda(\mu u) = (\lambda \mu)u$ pour tout $u \in V$ et $\lambda, \mu \in \mathbb{R}$;
- 8) $1 \cdot u = u$ pour tout $u \in V$.

On appelle les éléments de V des vecteurs, notés $v \in V$.

Remarque

Propriétés Pour tout espace vectoriel V, on a :

- 1) Pour tout $n \geq 1$, \mathbb{R}^n est un espace vectoriel réel.
- 2) L'ensemble des matrices $M_{m\times n}(\mathbb{R})$ est un espace vectoriel réel.
- 3) L'ensemble des fonctions rélles $f:\mathbb{R}\to\mathbb{R}$ muni des opérations

est un espace vectoriel réel.

Remarque

L'ensemble des polynômes à coefficients réels

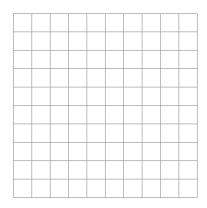
Pour $n \geq 0$, on définit

4.1 Sous-espaces vectoriels

Définition 34 (sous-espace vectoriel).

Soit V un espace vectoriel (EV). On appelle $sous\text{-}espace\ vectoriel}$ une partie W de V telle que

Exemple



Remarques

Exemples

Sous-espaces vectoriels	engendrés p	ar une	partie	d'un
espace vectoriel V				

Définition 35 (span ou vect).

Soit V un espace vectoriel et v_1,\ldots,v_p des vecteurs de V. L'ensemble des combinaisons linéaires de v_1,\ldots,v_p s'appelle le span.

Théorème 29. Soient v_1, \ldots, v_p des éléments d'un espace vectoriel V. Alors

Preuve

Exemple

Définition 36 (famille génératrice). On dira que $\{v_1, \ldots, v_p\}$ est une famille génératrice de span $\{v_1, \ldots, v_p\}$.

Exemple

4.2 Applications linéaires, noyaux et images

Définition 37 (application linéaire).

Soient V et W deux espaces vectoriels et $T:V\to W$. On dit que T est une application linéaire si elle associe à tout élément v de V un unique élément T(v) de W et si T vérifie

1.

2.

Exemples

Définition 38 (noyau d'une application linéaire). Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. Le noyau de l'application T est l'ensemble

Exemple

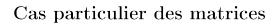
Définition 39 (image d'une application linéaire). Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. L' image de l'application T est l'ensemble

Exemple

Théorème 30. Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. Alors

- 1. Ker(T) est un sous-espace vectoriel de V.
- 2. Im(T) est un sous-espace vectoriel de W.

Preuve



Définition 40 (noyau d'une matrice). Soit $A \in M_{m \times n}(\mathbb{R})$. Le noyau de la matrice A, noté $\operatorname{Ker}(A)$, est l'ensemble

Théorème 31. Le noyau d'une matrice $A \in M_{m \times n}(\mathbb{R})$ est un sousespace vectoriel de \mathbb{R}^n .

Définition 41 (image d'une matrice). Soit $A \in M_{m \times n}(\mathbb{R})$. L'image de A, notée $\mathrm{Im}(A)$, est l'ensemble **Théorème 32.** Soit $A \in M_{m \times n}(\mathbb{R})$. Alors $\operatorname{Im}(A)$ est un sous-espace vectoriel de \mathbb{R}^m .

Preuve

Exemple